Eosinophilia and Schistosomiasis

Jarmila Klieščiková, MD, 1. LF UK

Eozinophilia

Increased level of eosinophils:
Alergic reaction
Parasitic infection

Not present in protozoal infections!!!

Level of eosinophils

Very high(30-80% WBC) Trichinella, Toxocara, Fasciola Medium high (10-30% WBC) Strongyloides, Ancylostoma, Necator Low, non-existing (0-10% WBC) Enterobius, Ascaris, Trichuris

Deposition of helminth in the tissue

Final site of development – Final host

Final site of development - Intermediate host

Transitory site of development

Tissues as Transitory site of development

- Ascaris lumbricoides
- Ancylostoma, Necator, Strongyloides
- As part of development, helminths migrate within the host
- Transitory site of development Lungs
- Host usually asymptomatic; heavy infection
 - pneumonia

Pneumonia

Cough, dyspnea, nausea, vomiting Lofflers eosinophilic syndroma Blood in sputum Larvae of parasites

Symptoms associated with the migration within the host disappear after residing within intestine

Eosinophilia low or non-existent

Symptoms depent on the final site of development GIT problems: asymptomatic vs symptomatic Individual

DIAGNOSTICS!!!!!

(ova/parasites in the stool 50 – 80 days pi)

Pneumonia: symptomatic; prendison

GIT: (nematoda):

• Albendazol, Mebendazol, Levamisol

Helmintic infections

Schistosomiasis

Trematoda; Blood fluke Snail fever, bilharziosis

Distribution: tropical and subtropical countries

Most important helminthosis

200 mil infected; 85% infections in Africa

600 mil at the risk of infection Archeology : eggs of schistosomas in mummies from XX. dynasty (1250-1000 years BC)

Global distribution of schistosomiasis

From Gryseels at al., Elsevier publish.

Complicated life cycle Development in one intermediate host – <u>specific snail</u> Final host – <u>human</u> Both sexes

Life cycle

For establishment of infection:

Fresh water lake/River

Final host discharging live eggs

(water contaminated by human feaces)

Presence of susceptible Intermediate host

Morphology of Miracidium

Miracidium

Larva released from the egg Infective for specific aquatic snail

By Dr T. Stewart

Oncomelania spp. – intermediate host of S. japonicum

Cercaria

0,5 mm Energy source: glykogen (24 hrs)

Actively searching for the host:

Arginine (S. mansoni) Lipidic components of skin Temperature

Phototaxy

Penetration into the skin and throught the skin is enabled by secretion of proteases: elastase, colagenase, hyaluronidase...

Formation of the schistosomula in the skin

Cercariae are differentiating to schistosomulas in the skin

Masking with **host antigens** Change of **metabolism** – aerobic to anaerobic Deposition in skin appr. 2 days

Schistosomula masked by host antigens and unrecognised by immunity migrates into the circulation

In blood – schistosomae absorb erythrocytes and catabolise haemoglobin (production of haemozoin)

Copulation – deposition of eggs

(dilatation of terminal venulas; 300-3000 eggs per day)

Antibody response – 50 days pi
Life expectancy: 3 years – S. haematobium
6 years – S. mansoni

Schistosoma, in copula

Infection proceeds through few different phases

The course and symptomatology of the disease is dependent on several factors

Species of schistosoma Number of parasites Phase of the infection Immune status of the host Localisation of parasites

Dermatitis

Makulopapulous dermatitis

Urticaria within 12-48 hrs after contact with contaminated water

pruritus, oedemas, lymphadenopathy, temperature

Symptoms disappear without therapy within 14 days

Dg.: histology within 3 days pi, serology (50 days pi)

Cercarial dermatitis/swimmers itch

Pulmonary phase

7-14 days pi

Migration of schistosomulas – pulmonary infiltrates (not visible on X-Ray)

Dry cought, hemoptysis, temperature, chest pain, myalgia, diarrhoea, rash...

Bronchiolitis, interstitial pneumonia, thrombosis of pulmonary veins Acute infection: toxic stage Schistosoma japonicum

Katayama fever;

4-6 weeks pi (2-16 weeks)

fever, tiredness, myalgia, headchae, abdominal pain, diarrhoea, urticaria, cutaneous oedemas
Hepatomegaly, splenomegaly
Generalized lymphadenopathy
Eosinophilia

Acute phase of the infection

Chronic phase: traumatic stage

- 3-6 months pi
- Granulomatous reaction around deposited eggs
- T lymphocytes activation
- symptomatology: asymptomatic vs severe damage to the affected organs

Affected organs

Intestine Hepar Lien **Ren/Urinary bladder** Lungs and heart **CNS Reproductive organs**

schistozomosis of pancreas

schistozomosis of colon

Granuloma formation in hepar

S. mansoni

Distribution:

Africa, Arabian penisula, Brasilia, Surinam, Venezuela, Portorico

Intermediate host: Biomphalaria

Final host: human; rarely infection of animals

S. mansoni deposited mainly in V. mesenterica caudalis/inferior

colon, sigmoideum, rectum, hepar Periportal fibrosis

adenomatous papiloma on mucous surfaces

- portal hypertension; venostatic splenomegaly, fibrosis of pancreas
- Eggs discharged in the stool

Symptomatology

Abdominal pain persistent diarrhoea (with blood) anaemia Polyp formation hepato or splenomegaly, Signs of portal hypertension

Infection of colon (S. mansoni)

Intestinal polyposis

Granuloma formation in hepar

S. japonicum

Distribution:

Taiwan, Japon, China, Indonesia, Philippinas

Infective for almost all species of mammals

Intermediate host: Oncomelania

S. Japonicum is deposited mainly in *v. mesenterica cranialis/superior*

v. mesenterica caudalis, vena portae

Shape of the eggs – possible deposition in whole body, discharge mainly in stool Affection of hepar, intestine, portal hypertension

Symptomatology: similar to S. mansoni inf.

S. haematobium

Distribution:

Nile region, Africa, Asia, Cyprus, south Portugal, Jordan,

Intermediate host: Bulinus

Venous plexus vesical and pelvic

Polyposis of urinary bladder, hypertrophy of muscular layer; secondary bacterial infections

Symptomatology

Stenoses a dilatations of ureters papilomas, cysts, ulcerations, lithiasis of ren, hydro a pyonephrosis (eggs in renal parenchyma) secondary bacterial infection ca of urinary bladder

Dysuria, polakisuria, haematuria, eosinophiluria

Impotence

S. haematobium

Granuloma in urinary bladder

hydronephrosis

Vesicoureteric reflux in ascending cystography

Bladder calcification in plain x-ray

Eggs can be deposited by blood flow to different organs

Lungs: pulmonary hypertension Joints: arthropathy Brain: epilepsy, headache, vomiting, visual disturbances

Cor pulmonale, infection with S. japonicum

Diagnostics

Direct proof of eggs presence in stool, urine, biopsy

Serology (indirect haematogluttination, ELISA) **The test of viability of miracidia**

Therapy

• Praziquantel:

- Weak infection: 1 dose po 40 mg/kg
- Severe infection: 2 x 60 mg/kg a 4-6 hrs after meal
- Infection with S japonicum 3x á 4 hrs 20mg/kg
- Niridazol
- 25mg/kg/day in three doses 7-10 days in combination with diazepam

Metrifonate

• Only S. haematobium 7,5-10 mg/kg single dose; repeat in three weeks

Trichinella spiralis

Nematoda **Distribution: cosmopolite** Transmission: alimentary (consumation of **undercook** meat infected by larvae) Host: human, swine, bear, wild boar 8 species of trichinella CR - T. brittovi

T.spiralis

T. nativa

T. spp.; T. britovi

Intestinal phase –

Maturation of larvae about 30 hrs

Females are depositing larvae: **Appr. 4 days pi**; 1000-1500 larvae/1,5 month

Migration into the muscle –2-3 days

(affection of myocardium – damage to the heart function)

Calcification of larvae – after 6-12 months

Trichinella is intracellular parasite

Intestinal phase – formation of tunels in enterocytes Female 5 mm, male 2 mm

Invasion of muscle cells

(ILLY IN THE REAL PROPERTY IN

Infection of the muscle cells leads to changes in their function and composition induced by *Trichinella*

Loss of contractile elements and formation of collagenic capsula

Induced angiogenesis in infected cell

Symptomatology

IP: 5-25 days

Intestinal phase:

2-10 days pi; vomiting diarrhoea

Muscular phase:

fever (40°C),

myalgia weakness tiredness **periorbital edema**(80-100%) cefalea, konjuctivitis, Oedemas of limbs **maculopapul. exantema** (20-50%)

Lab.: eosinophilia, IgE,

Periorbital oedema; konjuctivitis

Subungual haemorrhagie

Periorbitel oedema

Diagnostics of the infection mainly by serology

Serology: antibodies against E/S antigen Biopsy PCR

Veterinary control: trichinoscopy

Therapy

Tiabendazolum

- 25-50 mg/kg/day in 2 doses (max. 3 g/day)
- Within 1 week after infection, affects the adults

Albendazolum

- 1.-3. day: 100-200 mg 3x per day
- 4.-14. day: 400-500 mg 3x per day

Mebendazolum

Albendazolum

- muscle phase
- 400 mg per day in 2 doses for 3 weeks

Cortikosteroids

Symptomatic treatment

In new infection it is possible to use albendazolum and anticonstipacy treatment every other day for 10 days

Taenia saginata

Cestoda Distribution: geopolit, typical food habits Source of the infection: raw or uncooked beef

Final host: human Intermediate host: cattle
Life cycle

In the muscles of cattle: cysticerkus bovis

(5-10 mm)

Final host is discharging proglottids containing eggs

Adult measures 3-10 m Prepatent period: 6-12 months

Female releases: 1000-2000 proglottids (80-100 th. Eggs per day)

Life expectacy: 20 years

Symptomatology

Usually asymptomatic Malnutrition in heavy infection

Atypic migration of proglottids - apendicitis

Cysticercus bovis only in ruminants: muscles, myocardium, diaphragma, oesophagus

Diagnostics

Proglottids in stool

(also discharged with no relation to defecation)Eggs in anal swabs

Taenia solium

Cestoda Distribution: cosmopolite Transmission - alimentary:

undercooked <u>pork meat</u> – human as final host food contaminated by eggs –

human as intermediate host

Epidemiology

Cysticercosis – 60% CNS; 3% eye Common asymptomatic infection

Prevalence of neurocysticercosis Mexico City 1.4 - 3.6% (autopsy) Bolívia 22% (seropositivity) Peru 8% Rwanda 21% Bombay 47%

(Seropositivity in orthodox Jews in USA?)

Life cycle

Final host: human (proglottids) Intermediate host: swine (human) – cysticerkus cellulosae

Inhabitates the intestine Adults measure 2-3 m Scolex with suckers and hooks Prepatent period: 11-12 months

Human as final host: symptomatology

Usually asymptomatic

Irritating movement of parasite, toxins – unspecific GIT problems

Cysticercosis

Cysticercus cellulosae: swine, human Localisation in host: muscles, brain, subcutaneous infection

Symptoms are dependent on: lasting of infection number of cysticerci their localisation immune response of host

Neurocysticercosis (active disease)

Arachnoiditis

Meningeal localisation:

Obstructive hydrocephalus

intrakranial hypertension

Parenchymatic localisation:

asymptomatic;

Brain oedema, seizures, focal neurologic deficiency, intracranial hypertension

Neurocysticercosis - inactive disease

Most common form of disease 60% of cases parenchymatic localisation

> Seizures Headache Vomiting

Changes of intelect, ataxy....

Neurocysticercosis

Fig 3. Sagittal TI-weighted MR images demonstrate a multiloculated lesion in the lateral ventricle (arrow) in the first exam (A), and the lesion migrating to the third ventricle (arrow) on the follow-up (B).

Eye – (ophtalmocysticercosis)

 frontal chamber, vitreous humour, below retina: inflammatory changes, atrophy of retina, chorioretinitis, iridocyklitis, catarakta

Subcutaneous –

Solitary or multiple; resembling neurofibromatosis

Subcutaneous cysticercus

Cysticercosis of muscles

Fig. 1 - Submucous nodule on the left dorsal aspect of the tongue (arrow).

Fig. 2 - Trans-operative aspect of the cysticerci, revealing an encapsulated lesion on the submucosa.

Fig. 4 - The duct-like invagination, which composes the caudal end of the larva, lined by the homogeneous membrane (M). Scolex (S) at the cephalic end. Haematoxylin and eosin x 12.5.

Diagnostics

Final host

Proglottids in stool

Eggs in perianal swabs

Intermediate host Imaging techniques (US, CT, NMR), calcificated, hypodense leasions Serology ELISA (3 months pi)

Final host therapy

Niklosamid (YOMESAN- Merck, tbl. 500 mg): Side effects: mild; headache, abdominal pain, fever Doses: 2 g p.o. in a single dose, after fasting children: < 11 kg = 0,5 g 11 - 34 kg = 1,0 g > 34 kg = 1,5 g

Praziquantel (CESOL 150 mg; BILTRICIDE 600 mg) doses:

- 5-10 mg/kg in a single dose, after meal

Intermediate host therapy:

- CHEMOTERAPEUTICS:
 - Praziquantel 10 25 mg/kg 3x per day, 2-3 weeks
 - Albendazol um 7,5 15 mg/kg/day (max. 800 mg) in 2 doses., 2-4 weeks
 - Cortikosteroid therapy for supression of oedema and intracranial hypertension
- Chemotherapy is not indicated in severe active neurocysticercosis,(could lead to life threatening inflammatory reaction), symptomatic therapy
- Solitary cyst with symptoms of epilepsy anticonvulsive therapy
- Surgery in subarachnoideal and intraventricular cysts, causig compression or hydrocephalus
- Ocular cysts are treated surgically with no chemotherapy

Prevention

- Sufficiently cooked pork meat

Freezer:

- 5 C 4 days
- 15 C 3 days
- 24 C 1 day

Toxocara canis/cati

Nematoda

Cosmopolite distribution

Seroprevalence USA: 2-10%

Transmission: — eggs in soil, sand, larvae in paratenic host

Most common: children

TOXOCAEA CANIS

Epidemiology

2-5% positive in cities of developed world14.2-37% positivie in villages in developed world

Tropical countries: 63.2% Bali, 86% Santa Lucia (West Indies) 92.8% La Reunion (French Overseas Territories, Indian Ocean)

Symptomatology

Asymptomatic seroconversion

Larva migrans visceralis

Larva migrans ocularis

Symptomatology is dependent on

Number of larvae in host and immune response Allergic reaction!!!

Granuloma formation

Larva migrans visceralis – symptomatology due to the migration of larvae in host

Abdominal pain, nausea, vomiting Exanthema, pruritus Hepatomegaly Pneumonia (cough, fever) Letargy, difficulties in sleeping Headache **Myositis** Rarely: seizures, myocarditis EOSINOPHILIA!!!

Exanthema; larva migrans visceralis

Larva migrans visceralis - hepar

Larva migrans visceralis - lungs

Larva migrans ocularis

Visual disturbances usually unilateral Strabism Leucokoria

Disease in dogs

5-50% seropositive in Europe

Tissue and GIT phase

Sleeping larvae (transplacentary, transmammary infection)

Eggs shed into the environment not mature

Diagnostics

Leukocytosis Eosinophilia + symptomatology

Definitive diagnostics:

Positive serology, biopsy
Therapy

Positive serology with no symptomatology dont treat!!!!!

Larva migrans visceralis – corticoids (Prendison)

Ocular form:

Albendazole (Albenza) - 10 mg/kg/d PO single dose for 4 weeks

Mebendazole (Vermox) - 25 mg/kg/d PO single dose for 4 weeks

Echinococcosis

Trematoda

Echinococcus granulosus, multilocularis, vogeli

Distribution: cosmopolite (Australia, New Zealand)

Definitive host

dog, wolf, coyote (granulosus) dog, wolf, fox, cat (multilocularis)

Intermediate host:

sheep, swine, deer (granulosus); rodents (multilocularis)

Distribution of E. granulosus; 2004, CDC

E. Granulosus in Europe

E. Multilocularis in Europe

Human serves as accidental intermediate host

The cyst has three walls: germinal, fibrous, fibrous (host)

Cystic echinococcosis (E. granulosus)

Alveolar echinococcosis (E. multilocularis)

Polycystic echinococcosis (E. vogeli)

Cystic echinococcosis

Alveolar echinococcosis

E. granulosus Grows appr. 1-5 cm/year inside

E. multilocularis

grows appr. mm/year outside

Protoscolexex grow from inner wall of the cyst, the daughter cells and protoscolexes = Hydatidous sand Symptomatology

Localisation Size of cyst Relationship of expansive cyst to surrounding **environment** (bile duct, vascular system) Complications due to the rupture of cyst Secondary bacterial infection **Reaction of immune system** (asthma, anaphylactic shock, nephropathy) Infection: primary and secondary

Hepatic involvement

- Usually asymptomatic for long time
- Accidental findings
- Abdominal discomfort, pain, decreased apetite
- Hepatomegaly
- Icterus
- Biliary colic

- Biliary colic
- Cholangiitis
- Pancreatitis
- Abscessus
- Portal hypertension
- Ascites
- Compression; trombosis of v. cava inferior
- Budd-Chiarri syndroma
- Rupture

E. granulosus; hydatic sand

E. Multilocularis – cyst is devided by septae, it grows outside, inside necrotic tissue

Obr. 2. CT – stejný nález v sagitální rovině Fig. 2. The same picture in sagital plane

E. multilocularis, central necrosis

Obr. 4. Resekát jater s hydatidovou cystou larválního stadia Echinococcus multilocularis Fig. 4. Resected liver specimen with hydatid cyst of larval stadium of Echinoccus multilocularis

Hydatid cyst

Involvement of lungs

"Tumour" of lungs Chest pain Chronic cough, expectoration, dyspnoe Pneumothorax **Eosinophillic pneumonitis** Pleural effusion Parasitic pulmonary embolus **Hemoptysis Biliptysis**

Rupture of cyst

Spontaneous vs evoked (trauma)

Dissemination of infection; anaphylactic shock

Diagnostics

- Eosinophilia not remarkable: up to 15%
- Serology:

Limitations:

- 10% patients with hepatic cyst and 60% with pulmonary cyst – false negative result
- Children up to 3 years false negative result

Imaging techniques – interpretation

- Simple cyst with clearly defined wall and uniform anechogenous composition unlikely
- Cysts with remarkable different structure of wall - likely
- Cysts with septae likely
- Solid heterogenous mass difficult to distinguish from granuloma or tumour, calcification – points out to echinococcosis

Casoni skin test, replaced currently by serology

Hydatic sand (movement of protoscolexes in cyst)

Echinococcus granulosus

Hydatid Sand

Hydatid cyst, histology

Therapy

Albendazole — 10 mg/kg 4 weeks, 12 cycles with 2 weeks breaks (sono, CT)

Praziquantel

Surgical removement

PAIR – Percutaneous Aspiration Injection (hypertonic saline, skolicidal solution, alcohol)

